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We consider analysis and design of low sonic-boom aircraft through the use of an invis-
cid, embedded-boundary Cartesian mesh method. Adjoint error estimation and adaptive
meshing are used in the analysis portion of this study to determine resolution requirements
of the computational domain, while adjoint-based gradients in conjunction with a parallel
optimization framework are used for design. Two analysis examples are presented. The
first is a verification study that shows excellent accuracy of mesh converged pressure sig-
nals when sampled both on-track and off-track at distances of 1.8 body lengths on meshes
with ∼13 million cells. The second is a validation study of a low-boom model that shows
close agreement between wind tunnel experiments and off-body pressure signals computed
via our Cartesian approach. The optimization example uses an inverse design approach to
re-shape a low-boom Mach 1.6 aircraft traveling at 45,000 ft. A detailed parametric model
is constructed in the RAGE modeler with approximately 180 parameters used as design
variables. Optimization reduced the perceived ground noise level by ∼10 dB to a rating of
76.7 PLdB while maintaining the lift and drag performance of the aircraft. Our discussion
shows that for functionals with certain common forms, the adjoint solution provides a de-
tailed bookkeeping that can highlight specific regions of the aircraft that contribute to the
cost function. In such cases, examination of the adjoint solution directly highlights critical
portions of the model, encouraging designers to efficiently select design variables.

I. Introduction

Analysis methods for sonic-boom prediction have improved dramatically in recent years as a result of both
commercial and government interest in viable overland supersonic flight. Backed by programatic invest-

ment within NASA and elsewhere, a number of simulation tools have recently become available for predicting
high-fidelity pressure signals several body lengths away from an aircraft.1–11 At such distances, details of
the three-dimensional aircraft geometry become less important and atmospheric propagation codes12–14 can
be employed to model wave propagation through the atmosphere and to the ground.

While several technologies have played roles in improving the effectiveness of CFD-based analysis, one of
the keys has been the widespread use of adaptive mesh techniques.1–4,6, 7, 15–17 Configurations designed for
low sonic-boom necessarily send only weak pressure disturbances toward the ground. Accurate propagation
of such weak waves over several body lengths is a challenge for any numerical simulation technique. Adaptive
meshing techniques concentrate and orient mesh elements in the computational domain to more efficiently
propagate these signals and have been far more successful than earlier efforts. Particularly noteworthy has
been the contribution of adjoint equation or output-based meshing approaches which can prioritize mesh
refinement specifically to annihilate error in the propagated signal.3,4, 6, 16,18 The insight provided by these
approaches has benefitted even fixed-mesh approaches since they aid in our understanding of flow sensitivities,
meshing requirements and the role of discretization error in these simulations.
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Figure 1. Sketch of basic methodology used for
sonic-boom prediction with CFD.

This improved analysis capability has increased confi-
dence in the use of numerical simulations in low-boom air-
craft design. Moreover, the natural division between the
near-body simulation and the long distance atmospheric sig-
nal propagation, sketched in Figure 1, lends itself to an ap-
pealing inverse design methodology. A target pressure dis-
tribution – with an acceptable ground signature – can be
prescribed in the CFD domain. An optimizer can then use
this prescribed target pressure distribution in shaping the
aircraft.

In recent work, we presented an adjoint-based design
framework for heterogeneous parallel computing environ-
ments.8 Since the cost of the adjoint approach is almost in-
dependent of the number of design variables, it uses dramat-
ically fewer resources than gradient-based methods based
upon finite-differences.19 The frameworks’ flexibility stems
from a core Cartesian meshing and analysis capability which
is fast, robust and insensitive to geometric complexity.20–22

This software was initially demonstrated on the low-boom
shaping of a simplified aircraft geometry using a CAD-based
geometry engine.8 In the current work, we consider a more realistically detailed non-CAD model with em-
pennage, pylons and nacelles. The optimization problem is also more realistic as it includes both on-track
and off-track noise targets while seeking to maintain aerodynamic performance.

After first presenting relevant verification and validation studies, our presentation of the optimization
example focuses on the role of the discrete adjoint solution in the optimization process. We show adjoints
can provide a detailed mapping of offending regions of the pressure signal to specific parts of the vehicle.
This aids not only in understanding the physics in the flow, but also in model layout, construction, and
parameterization.

II. Shape Optimization with Adjoint-Based Gradients

The aerodynamic optimization problem we consider determines values of design variables, Xa, that
minimize a given objective function

min
X
J (X,Q) (1)

where Q = [ρ, ρu, ρv, ρw, ρE]T denotes the continuous flow variables and J represents a scalar objective
function defined by pressure integrals either at the surface or at off-body locations in the domain. For sonic-
boom and aircraft performance, this objective function frequently takes a form which combines off-body
pressure sensors with metrics of aircraft performance (i.e. lift and drag) using a weighted sum,

J =
1

p2
∞

∑
Φ

[
Ws

∫
(p− p?)2dSΦ

]
+WL

(
1− CL

CL?

)2

+WD

(
1− CD

CD?

)2

(2)

where Φ is the sensor location and the subscript (?) indicates target values.
The flow variables satisfy the three-dimensional, steady-state Euler equations of a perfect gas within a

feasible region of the design space Ω
F(X,Q) = 0 ∀ X ∈ Ω (3)

which implicitly defines Q = f(X).
The optimization problem is solved through use of a gradient method. We use a discrete approach, where

Eqs. 1- 3 are first discretized along with any constraints and then linearized to obtain the gradient dJ /dX.
In the following sections, we first sketch a brief outline of the flow solution methodology for evaluating the
objective function and then describe the gradient computation. Further detail of the theoretical approach is
available in earlier work.19,23,24

aWe assume X is a scalar to simplify notation of partial and total derivatives.
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A. Objective Function Evaluation

Figure 2. Cartesian mesh in two-
dimensions with a cut-cell boundary.

At each step of the optimization procedure, we compute an approx-
imation of the objective function J by solving the flow equations
(3) on a multilevel Cartesian mesh with embedded boundaries. The
mesh consists of regular Cartesian hexahedra everywhere, except
for a layer of body-intersecting cut-cells adjacent to the bound-
aries as illustrated in Figure 2. The spatial discretization for the
flow solver uses a cell-centered, second-order upwind finite-volume
method with a weak imposition of boundary conditions. The re-
sulting system of equations can be written in residual form

RH(QH) = 0 (4)

whereH represents the average cell size and Q = [Q̄1, Q̄2, . . . , Q̄N ]T

is the discrete solution vector of the cell-averaged values for all N
cells of the mesh. Steady-state solutions are obtained using a five-
stage Runge–Kutta scheme with local time stepping, multigrid and
a domain decomposition scheme for parallel computing.22,25,26

B. Gradient Computation

To compute the discrete gradient, dJH/dX, we note that a variation in the design variables X influences
both the computational mesh M and the flow solution Q. We write the governing equations of the steady
flow problem to explicitly include this dependency, resulting in a system of equations

R(X,M,Q) = 0 (5)

where the subscript H has been omitted to simplify the notation. The influence of shape design variables
on the residuals is implicit through the computational mesh

M = f [T(X)] (6)

where T denotes a triangulation of the wetted surface. The design variables that appear directly in Eq. 5
involve parameters that do not change the computational domain, such as the Mach number and angle
of attack. The gradient is obtained by linearizing the objective function, J (X,M,Q), and the residual
equations, resulting in the following expression

dJ
dX

=
∂J
∂X

+
∂J
∂M

∂M

∂T

∂T

∂X︸ ︷︷ ︸
A

−ψ T

∂R

∂X
+
∂R

∂M

∂M

∂T

∂T

∂X︸ ︷︷ ︸
B

 (7)

where the vector ψ represents the adjoint variables given by the following linear system[
∂R

∂Q

]T

ψ =
∂J
∂Q

T

(8)

The solution algorithm for the adjoint equation uses the same time-marching scheme and parallel multigrid
method of the flow solver.23

The most interesting part of the gradient computation is the evaluation of terms A and B in Eq. 7.
Scanning these triple-product terms from left to right, the linearization with respect to M involves the
flow solver, Eq. 5, while the middle term involves the mesh generator. In embedded-boundary Cartesian
mesh methods, an infinitesimal perturbation of the boundary shape affects only the cut-cells. Unlike body-
conforming approaches, there is no mesh perturbation scheme to smoothly map boundary shape changes
into the interior of the volume mesh. Consequently, the mesh-sensitivities ∂M/∂T, which contain the
linearization of the Cartesian-face areas and centroids, volume centroids and the wall normals and areas
with respect to the surface triangulation, are non-zero only in cut-cells. The last term of Eq. 7 is the inner
product of the discrete adjoint solution with the residual sensitivities. This results in a fast and robust
procedure for gradient computation, although, there is a reduction in the formal order of accuracy of the
gradient.24
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C. Design Framework and XDDM

The parallel Cartesian design framework8 is responsible not only for control and execution of the flow and
adjoint solvers, but also for coordinating construction of the geometry, the mesh and residual sensitivities for
each design variable (A and B in Eq. 7). The shape sensitivities, ∂T/∂X, require access to and control of the
geometric modeler. This is provided through the Extensible Design Description Markup protocol (XDDM).8

XDDM’s role is to provide modeler-neutral access to parameters and other information associated with
geometry construction and queries. It can be used with CAD-based or non-CAD modelers. This XML-based
protocol is used throughout the design framework to encapsulate meta-data (including design variables,
analysis parameters, objective functions, constraints, etc.). It also provides access to a collection of standard
services including computation of discrete surface sensitivities, symbolic function manipulation and model
instantiation or regeneration.

While the framework is open to virtually any optimization package to solve the underlying minimization
problem, interfaces for two optimizers are currently in place. An efficient quasi-Newton method with a
backtracking line-search24 is bundled with the framework. In addition, the popular SQP-based optimization
package SNOPT(v.7)27 is fully supported along with its elegant handling of constraints.

III. Numerical Investigations

Before shifting to shape optimization, we summarize two analysis studies useful both for illustrating
aspects of the numerical approach and for providing insight into the meshing requirements of the boom-
optimization study performed later.

A. Verification of Off-track Signal Convergence and Meshing Requirements

Our goal is to investigate designs with good performance off-track as well as on-track. This implies an
understanding of the numerical scheme’s behavior for sensors placed at various azimuths. To minimize com-
putational expense, our meshing strategy aligns the Cartesian mesh with the characteristic wave propagation
direction of the freestream by rotating the computational domain.4,8 Since mesh cells are both aligned and
stretched along the Mach angle of the oncoming supersonic flow, this meshing strategy clearly promotes
propagation of signals from the geometry to sensors located on-track. The efficacy of this approach for
sensors located at other azimuthal locations, however, is less obvious.

# = 0° 15° 30°
45°

On-track

Azimuthal Sensor Array at h/L!=!1.8

L = 17.6778!in

M! = 1.6
  " = 0°

Figure 3. Axisymmetric geometry for verification study of signal propagation to off-track sensors. Pressure
sensors are located at a distance h/L = 1.8 and at azimuthal locations Φ = {0◦, 15◦, 30◦, 45◦}. M∞ = 1.6, α = 0◦.
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Figure 4. Symmetry plane (left) and perspective view (right) of cutting planes through the adaptively refined
mesh used for the azimuthal performance study. Sensors are located at Φ = {0◦, 15◦, 30◦, 45◦} a distance h/L = 1.8
from the body. The final mesh contains ∼13M cells. M∞ = 1.6, α = 0◦.

To investigate numerical accuracy for such off-track signals, we perform a simple verification study using
an axisymmetric model and examine signal propagation to an array of sensors located both on-track and
off-track. Figure 3 shows the model and problem setup. The model is a body of revolution based upon the
work of Darden, George and Seebass,28,29 but incorporating lift relaxation near the aft portion of the shape.b

The axisymmetric model is mounted on a cylindrical sting which tapers to a point downstream. Symmetry
dictates that when the body is aligned with the freestream (α = 0◦), the flowfield will be axisymmetric and
identical signals will be measured at sensors located at any azimuthal position. This symmetry provides an
ideal basis for a verification exercise in which four sensors are placed in the simulation at azimuthal locations
Φ = {0◦, 15◦, 30◦, 45◦}, with the convention that on-track is at Φ = 0◦. The body length, L, is 17.678 inches
and the sensors were all located a radial distance h/L = 1.8 away from the centerline.

Mesh adaptation is driven by a simplified form of the functional in Eq. 2 with the target values set to
freestream pressure and without the lift and drag metrics

J =
1

p2
∞

∑
Φ

∫
(p− p∞)2dSΦ (9)

By comparing the off-track results with the on-track signal, we can quantify the scheme’s performance at
non-zero azimuths. Note that the output functional weighs errors along each of the four sensors equally. As
a result, the adjoint-driven refinement scheme will attempt to equalize error contributions of each sensor by
performing more adaptation near sensors that contribute higher error. Thus, the numerical experiment will
also yield the resolution requirements to obtain equal error in off-track and on-track signals.

Figure 4 provides an overview of the mesh and flow solution at M∞ = 1.6 and α = 0◦. The figure
shows symmetry plane and perspective view with mesh cuts shaded by pressure coefficient. The initial
mesh in this simulation contained ∼10k cells. After 11 cycles of adaptive refinement this mesh had grown
to nearly 13M cells (Fig. 4). The view in the symmetry plane shows the Φ = 0◦ sensor below the body
and the expected pattern of mesh adaptation bounded in front by the cone-shock and in the rear by the
last set of flow characteristics which impact the sensor. The flow over the forebody is essentially conical
opening downstream, and the characteristics affecting the sensors are essentially conical opening upstream.
In this supersonic flow, the adjoint-based refinement roughly concentrates cells within the intersections of
these cones. Planes cutting in crossflow directions pick-out conic sections as well. The perspective view at
the right of Fig. 4 has an inclined crossflow plane cut through the forebody flow capturing the parabolic
expansion as it sweeps out toward the off-track sensor locations.

Figure 5 examines convergence of the functional (Eq. 9), its adjoint-based correction and error-estimate,
as described in our earlier work.3,30 Recall in this case that the functional is the sum of the pressures along
the sensors. Taken together these plots give a strong indication of mesh convergence in the simulation, since
changes in these pressures are vanishing as the mesh is refined. The frame at the left shows convergence of
both the functional and its correction (i.e. the functional value if the mesh were uniformly refined). Both

bA wind tunnel model of this geometry was provided by Lockheed Martin Corp.
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Figure 5. Mesh convergence of the functional (Eq. 9), its correction, and error-estimate.

asymptote with mesh refinement. Moreover, the fact that the correction systematically leads the functional
is evidence that the problem is well behaved. The frame at the right shows convergence of the adjoint-based
estimate of the error in J . After about 30k cells, this estimate decreases steadily indicating that the mesh
refinement is systematically eliminating discretization error in the computational domain.

The final plot in Figure 6 shows a comparison of the pressure signals (∆p/p∞) along all four sensors.
Agreement between the sensors is very good and symbols have been added to distinguish among the various
lines. Since the mesh was refined in response to estimates of the discretization error, the number of cells
along each gives an indication of the meshing requirements to equalize error at the sensor locations. Cell
counts along the sensors at 0◦, 15◦, 30◦ and 45◦ are 898, 908, 984 and 1209, respectively. This distribution
is roughly cosine-like in the azimuth angle.
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0.005

0.0075

0.01

!
p/

p "

# = 0° (under-track)
# = 15°
# = 30°
# = 45°

Φ Num. Cells

0° 898
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Figure 6. Comparison of computed normalized pressure signals (∆p/p∞) on azimuthal sensor array shown in
Fig. 3. The table at the right gives the final number of cells along each sensor.

B. Experimental Comparison

The investigation in the preceding section gives insight into the meshing requirements for obtaining pressure
signals at various azimuths of simple shapes. Before turning to shape optimization, we expand this under-
standing with a brief validation study of the on- and off-track signatures of a relevant low-boom model.

Figure 7 shows a perspective view of the Gulfstream Low Boom Model tested in the Langley Unitary
Plan Wind Tunnel (UPWT)31,32 under a cooperative agreement between Gulfstream and NASA through
the Fundamental Aerodynamics Program’s Supercruise Efficiency initiative. The model is a highly swept
wing-body design which includes a vertical tail and a top-mounted blade shaped sting. The slender forebody
incorporates a “Quiet Spike” nose and the model is designed for both low boom and low-drag.32,33

The simulations consider measurements taken at a free stream Mach number of 1.6 with pressure mea-
surements taken both on- and off-track. The nominal fuselage length of 13.2 inches was used for establishing
the h/L distances in the tests. Our comparison with data in this section considers two runs at h/L = 1.2,
namely tunnel run 133 which was conducted at Φ = 0◦ and α = 0.256◦ and run 173 which was conducted at
Φ = 48.2◦, h/L = 1.32 and α = 0.297◦.
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M! = 1.6

! = 0.26°  at  " = 0°

!#=#0.30°  at  "#=#45°

Figure 7. Perspective view of the Gulfstream Low Boom Model attached to the top-mounted sting. The
surface triangulation used in the simulations had ∼200k triangles. Test conditions were M∞ = 1.6, α = 0.26◦

on-track and α = 0.3◦ at 45◦ azimuth. Surface mapped by pressure coefficient.

As in the earlier example, the Cartesian mesh was rotated to account for the Mach angle of the freestream
and the incidence of the oncoming flow.4,30 Separate adaptive-mesh simulations were performed for the two
sensor positions. Since the angle-of-attack is quite similar between the two cases, a mesh rotation angle of
41.68◦ was used for both cases. The surface triangulation contained ∼200k triangles, which is somewhat
coarse for low-boom simulations requiring high fidelity. The background Cartesian mesh was stretched in
the dominant propagation direction such that the cells are roughly square when viewed from the direction
of the freestream flow. Both simulations began on coarse initial grids with ∼4,100 cells in the computational
domain. After 11 cycles of adaptive refinement, the final meshes in both cases contained roughly 14.7M cells.

As in the SEEB-like example presented earlier (§III.A), mesh adaptation was driven by an off-body
functional measuring the pressure deviations along the sensor (Eq. 9). Figure 8 contains a view of the
mesh in the symmetry plane and contours of pressure coefficient in the discrete solution for the on-track
case Φ = 0◦. The series of compressions and expansions emanating from the nose are clearly visible in
the Cp contours and have received significant attention by the error-driven refinement scheme. As in the
axisymmetric SEEB case, the method has focused meshing between conical regions of the domain anchored
in front by the tip of the geometry and in the rear by the aft end of the sensor. The mesh for the off-track
(Φ = 45◦) case is similar, modulo the change in sensor position.

Pressure signals from the simulations are displayed in Figure 9. On the left, the blue line shows the
computed signature (∆p/p) overplotted with data from tunnel run 133 taken on-track at Φ = 0◦ and com-
pared with numerical results from inviscid simulations performed with both AIRPLANE7 and FUN3D.6,16

On the right, the off-track signal (Φ = 45◦) is compared with tunnel data from run 173. Off-track results for

Sensor at ! = 0°

h/
L 

= 
1.

2

Figure 8. Final adapted mesh and pressure coefficient discrete solution for low-boom model with sensor located
on-track at Φ = 0◦. M∞ = 1.6, α = 0.26◦. The final mesh has ∼14.7M cells after 11 levels of adaptive refinement.
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Figure 9. On-track and off-track pressure signals at h/L = 1.2 with comparison to experiment and other
simulations. On-track: Φ = 0◦, M∞ = 1.6, α = 0.26◦. Off-track: Φ = 45◦, M∞ = 1.6, α = 0.30◦. Experimental data
from UPWT tests.31,32

this case were not available from FUN3D, so only the AIRPLANE results are shown. Comparisons between
experiment and simulation show good agreement, matching the experiment especially well over the forebody
and the aft-portion of the signature. Correlation among the numerical simulations is particularly strong.
Especially noteworthy is the close agreement with the FUN3D results. Both methods use adjoint-driven
mesh adaptation with a similar choice of output functional, and both can document their approach to mesh
convergence. Agreement with the AIRPLANE results is excellent for both sensor locations showing the
efficacy of the meshing practices used in those simulations. All the simulations slightly under-predict the
pressure rise associated with the main wing shock and differ through the expansion before the wing trail-
ing edge. Similar trends are evident in a number of the numerical simulations and are being examined in
other works.6,7, 31 The under-prediction of the maximum over-pressure suggests a possible mismatch in flow
incidence between the simulations and experiment. Through the wing expansion, the simulations show a
deviation at both sensor locations near x/L of ∼2.2. Aside from this particular feature, agreement is quite
good both on-track and 45◦ off-track, including the locations, sharpness, and magnitude of the signal at the
sensors.

IV. Shape Optimization for Low Boom and Performance

The shape optimization example considers a vehicle based upon the wind tunnel model of the preceding
section but with additional complexity. As shown in Figure 10, the wind-tunnel geometry was enhanced
through the addition of pylons, nacelles and a horizontal tail. The vehicle has a semi-span reference area
of 300 ft2 and a length of 134.6 ft measured from the spike tip to the close of the tail-pod. Assuming a
weight of 33,000 lbs and steady level flight at 45,000 ft in the standard atmosphere gives a design cruise lift
coefficient of 0.0996.

To determine cruise angle-of-attack, we performed an adaptive mesh simulation taking lift coefficient as
the output of merit and allowing the solver to adjust the incidence angle as the simulation advanced and
the mesh was refined. This study yielded a mesh converged cruise α of 0.612◦. This is roughly twice the
incidence angle of that used in the preceding section with the tunnel model. At this lift coefficient, the
baseline vehicle has a drag of CD = 0.0123 giving an inviscid L/D ratio of ∼8.1. In the shape optimization
which follows, we seek to maintain these lift and drag values while reducing the boom-noise at the ground
measured by sensors located both on-track and 15◦ off-track.

A. Parametric Model

For modeling support, we chose the analytic “Rapid Aerospace Geometry Engine” (RAGE). RAGE is
lightweight, flexible, and fully parametric.34–36 It is Java-based and provides high-quality loftings from
a large catalog of geometric primitives. Since it is platform independent and fast, the modeler can run on
the same hardware as the optimization through the threading options built into the design framework.8
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Figure 10. Baseline aircraft geometry used in shape optimization constructed using RAGE modeler and
including empennage, pylons and nacelles. The surface triangulation contains ∼ 1M triangles.

Figure 10 shows views of the baseline model generated by RAGE with 12 watertight components. The
fuselage is described by 24 circular or elliptical cross-sections lofted either linearly or via Akima splines.34

The main wing planform is defined by 14 spanwise stations on each semi-span, while 7 are used for the the
horizontal tail. In both cases, the semi-spans are lofted with Akima splines. The airfoils at each station use
the Bernstein polynomial approach of Kulfan37 with 5–11 parameters controlling the upper and lower surfaces
of each section. The highly swept vertical tail uses a similar description, but with 8 symmetric airfoil sections
and is capped with a circular cross-section tail-pod. The nacelles and pylons used construction similar to the
wings and empennage and were included as “non-deformable” geometry with only their positions allowed to
change parametrically.

In total, approximately 1150 parameters were used to describe the model and were available for control
through the design framework. Access to these variables was provided through the framework’s XDDM
protocol, and a straightforward XDDM-to-RAGE wrapper was used to translate the XDDM meta data
to native RAGE input files used for model regeneration. Shape sensitivities for the design variables were
provided by the framework’s finite-difference sensitivity service.

B. Forebody Design and Adjoint Analysis

Our design investigations open with consideration of a sub-problem narrowly focusing on inverse design of the
aircraft forebody. This problem provides a more tractable starting point than optimization of the complete
geometry and gives insight into the information offered by the adjoint solution in design. Reviewing the
pressure signals shown in Fig. 9, the impact of the segmented nose on the pressure signal is obvious. Both
on-track and off-track signatures commence with a series of four rapid oscillations as the flow negotiates the
discrete compressions and expansions of the segmented nose geometry. These features are clearly discernible
due to the hyperbolic nature of supersonic flow, and the fact that small disturbances travel with similar
wavespeeds. This implies that in the near-field – before substantial wave coalescence – there exists a degree
of stratification along the signal. Oscillations at the front of the signal are traceable to the forebody while
those at the back come from the aft of the aircraft. While seemingly a statement of the obvious, there is
an important subtlety. This stratification of the near-field permits a detailed accounting linking specific
portions of the aircraft to different regions of the pressure sensor. Loosely speaking, this accounting is what
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is being offered by the adjoint, and this information can aid directly in selection of design variables for use
in the optimization.

To illustrate, consider the inverse design functional

J =
1

p2
∞

∫
(p− ptarget)

2dS (10)

Optimization of this objective function seeks to minimize the differences between the actual signal pro-
duced and that of a prescribed target. Figure 11 contains a numerical experiment illustrating our discussion.
In this example, the signal from the baseline parametric geometry was extracted at the design flight condi-
tions (M∞ = 1.6, α = 0.612◦) on-track at a distance of h/L = 2. We then specified a smooth, monotonic
target signal over the forebody portion of the pressure signature (“active target” in Fig. 11). The objective
function in Eq. 10 measures the deviation of this signal (black) from that of the target (blue).

Adjoint solutions show which regions of the flow influence the objective function. This is evident in the
contours of the density adjoint for the baseline geometry shown at the left of Fig. 11. The parallel isoclines
follow flowfield characteristics through the domain and trace differences between the functional and target
back to specific portions of the surface geometry.

Put more precisely, solution of the adjoint equation (Eq. 8) shows the influence of residual perturbations
on the objective, J . When the gradient is computed for an off-body functional on a Cartesian mesh, the first
two terms on the right side of Eq. 7 are zero because the objective function is not co-located with the design
variables. Shape design variables affect only the surface thus the mesh sensitivities (∂M/∂T) are non-zero
only in the cut-cells. The entire gradient expression simplifies to an inner product of the adjoint variables
with the residual sensitivities at the body in the third term on the right of Eq. 7. Therefore, for fixed values
of residual sensitivities, the adjoint variables give a direct measure of the sensitivity of the objective to the
shape.

We can make an additional observation for inverse-design formulations, where pressure, lift, or drag are
being driven to a specific target. The right side of the adjoint contains a term of the form (p − p?) which
is due to the linearization of the square in the objective function (see Eqs. 2, 9, or 10). Therefore as we
approach optimality, i.e. (p→ p?), we expect a weakening of the adjoint field.

The right side of Fig. 11 provides an excellent illustration and summarizes the situation after shape opti-
mization. The shape was modified using 20 parameters controlling the vehicle forebody as design variables
using the objective function in Eq. 10. After 16 design iterations, the optimizer had reduced the value of
the objective by about 1.5 orders of magnitude. The resulting design is shown at the top of the right side
of Fig. 11. Contours of the density adjoint are displayed along with the geometry to graphically illustrate
the optimizer’s progress. Isoclines on the right use the same color map as on the left, with white showing

Figure 11. Forebody inverse-design example. Isoclines of the density adjoint are shown for an inverse design
objective based on the difference between the forebody signal and the active target, Eq. 10. Pressure signals
extracted undertrack at a distance of h/L = 2.
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zero contribution to the functional. The line plot of the signal gives a quantitative view of the optimizer’s
success in achieving the target. We note the pronounced weakening of the adjoint field giving both a view
of the optimizer’s progress and a direct indication of regions where more work remains.

C. Baseline and Targets

The starting point for optimization is the RAGE model shown in Figure 10. Our optimization problem seeks
to improve the ground signal on-track (Φ = 0◦) and off-track (Φ = 15◦), while maintaining lift and drag at
fixed incidence angle. As described earlier, aerodynamic performance was established through error-driven
adaptive simulations at fixed lift. To quantify the initial boom-levels, we ran adaptive simulations extracting
pressure signatures at several distances on-track h/L = {1.2, 2.0, 3.0}. These signals were then propagated
to sea level from the 45,000 foot cruise altitude using an atmospheric propagation code.14 This investigation
showed that signal extraction from h/L = 2.0 and h/L = 3.0 produced essentially the same ground signals
and loudness metrics. Since the computational domain with the sensor at h/L = 2.0 was smaller, signal
extraction from this position was used in optimization.

The computational domain used in optimization was meshed using a fixed grid containing pre-specified
regions of mesh refinement.11 Grid densities were guided by meshing requirements developed using a number
of adaptive mesh simulations at the design conditions using the methodology outlined in the verification and
validation studies presented earlier (§III). Figure 12 shows a view of the final mesh, the sensor location, and
isobars in the discrete solution at the design conditions of M∞ = 1.6, α = 0.612◦. This mesh has a total of
9.3 M cells with an aspect ratio of roughly 3:1. The expanded scale of Cp in this figure emphasizes the fact
that the signals near the sensor are quite weak – even for the baseline model.

Figure 13 shows pressure signals on-track and off-track for the baseline configuration extracted at h/L =
2.0 for azimuths of Φ = 0◦ and Φ = 15◦. Also shown are the target signatures used to drive the shape
optimization. These targets are approximately sinusoidal and were generated by simply splining selected
points on the baseline signals and then evaluating their noise levels after propagation to the ground. More
sophisticated methods exist for producing such near-field targets; however in the current work we simply
used this “cut and try” approach. Since they were naively generated, there is no expectation of either
attainability or optimality.

Figure 14 shows the resulting ground signatures both on- and off-track. These were generated taking the
baseline and target signals in Fig. 13 and using the sBOOM augmented Burgers’ equation propagation code
of Rallabhandi.14 Propagation through the standard atmosphere was computed from the cruise altitude of
45,000 ft to sea level for both azimuths. The graphs show overpressure with time (in milliseconds) on the
abscissa. The peak-to-peak time is about 55 ms with a period of about 125 ms (8 hz). Legends in both
plots include noise levels (in PLdB) for each of the signals. The baseline signal is 86.3 PLdB on-track, and
84 PLdB at 15◦ off-track. The noise ratings on the propagated target signals are 71.1 PLdB and 71.5 PLdB
on-track and off-track, respectively. This is about a 15 decibel improvement over the baseline.

Figure 12. (left) Multilevel Cartesian mesh used for shape optimization containing 9.3 M cells with a pressure-
sensor located at h/L = 2.0. (right) Isobars in the discrete solution of the baseline model shown in Fig 10.
M∞ = 1.6, α = 0.612◦.
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Figure 13. Pressure signals on-track and off-track for the baseline geometry at Φ = 0◦ and Φ = 15◦ at h/L = 2.0.
Also shown are the signals used as optimization targets for each azimuth. M∞ = 1.6, α = 0.612◦
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Figure 14. Ground signals on-track and off-track for the baseline geometry and optimization targets after
propagation to the sea-level from a cruise altitude of 45,000 ft using sBOOM.14

The final objective function used to drive the optimization took the form of Eq. 2. Each sensor was
weighted equally and the weights on the lift and drag penalty terms were both twice the sensor weight.
With the targets and functional defined, optimization began with an evaluation of the baseline geometry
as a starting point. Figure 15 shows the starting geometry, colored with isoclines of the density adjoint.
The figure displays upper, lower and rear 3/4 views. White indicates regions of the geometry which do
not contribute to the functional while the red and blue regions show where work is required. Perhaps
unexpectedly, the mapping shows that residuals on the upper wing surface can affect the objective function
even though it is dominated by the signal below the wing. Here the adjoint reminds us that the upper
wing surface determines the flow over the nacelles and interacts with the empennage resulting in the design
sensitivities shown.

D. Optimization Results

Optimization of the full geometry used design variables governing the shape of the fuselage, wing, and ver-
tical and horizontal tails. Roughly 120 variables were dedicated to controlling the Bernstein polynomials on
the main wing, while approximately 40 controlled the fuselage cross-section and lofting. Another 20 design
variables were dedicated to control the thickness distribution of the vertical tail and the thickness and twist
distribution of the horizontal tail. In total, 180 design variables participated in the optimization, although
not all were active all the time. Numerous smaller optimization problems were performed on subproblems
with ∼20–40 design variables to help understand the signal’s response to various shape parameters. Approx-
imately 50 design iterations were used with the largest set of design variables. Optimization reduced the
cost function by a factor of 16 before the design stopped progressing.
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Rear 3/4
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Figure 15. Views of baseline geometry mapped with isoclines of the density adjoint at cruise conditions for
the composite functional given in Eq. 2.

Figure 16 shows the pressure signatures at h/L = 2.0 after optimization both on-track (left) and 15◦

off-track (right). For comparison, the optimization targets and the original signals of the baseline model are
included on both plots. In both cases, the signatures have made substantial progress toward the target. The
peak-to-peak values of the baseline signal are approximately 0.2p∞ at both locations. The final design has
reduced this peak-to-peak by approximately 60% on-track and 50% off-track. At both azimuths, the design
was particularly successful in matching the front and aft-portions of the target signal. While the forebody
was discussed earlier, the aft signals were particularly responsive to tuning the thickness of the airfoil sections
on the vertical tail and the twist of the horizontal tail along with subtle reshaping of the aft fuselage.

Figure 17 shows the signatures at Φ = 0◦ and Φ = 15◦ after propagation from the cruise altitude of
45,000 ft to sea-level through the standard atmosphere using the sBOOM augmented Burgers’ equation
solver.14 For reference, these graphs also include both the propagated signatures of the baseline and target.
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Figure 16. Pressure signals on-track and off-track for the baseline geometry at Φ = 0◦ and Φ = 15◦ at h/L = 2.0.
Also shown are the signals used as optimization targets for each azimuth. M∞ = 1.6, α = 0.612◦.
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Figure 17. Ground signals on-track and off-track for the baseline geometry and optimization targets after
propagation to the sea-level from a cruise altitude of 45,000 ft using sBOOM.14

As before, the graphs show overpressure with time (in milliseconds) on the abscissa. At both azimuths, the
peak-to-peak time is about 55 ms with a period of about 125 ms (8 hz). Legends in both plots include
perceived noise levels for each of the signals. On-track, the baseline signal is rated at 86.3 PLdB. The final
design achieved a 9.6 dB improvement to a noise rating of 76.7 PLdB. At 15◦ off-track, the final design
achieves 76.1 PLdB as compared to the baseline aircraft’s rating of 84.8 PLdB. Using the acoustic “A-
weighting” filter, the final design’s acoustic noise ratings are 61.3 dB(A) on-track and 60.1 dB(A) 15◦ off
track.

Figure 18 contains isobars in the discrete solution of the final model in the symmetry plane from the
aircraft to the sensor location at h/L = 2.0. The colormap for the Cp distribution is same as that shown
in Fig. 12 for the baseline design. Comparing these two figures we see a marked weakening of the waves
arriving at the sensor. The strong over- and under-pressures of the baseline vehicle have been completely
eliminated and the field is noticeably smoother.

Figure 18. Isobars in the discrete solution of the final model after design, sensor at h/L = 2.0 shown. Colormap
for Cp distribution is same as in Fig. 12. M∞ = 1.6, α = 0.612◦.
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Figure 19. Views of final design mapped with isoclines of the density adjoint at cruise conditions for the
composite functional given in the text. Colormap identical to that in Fig. 15.

Lastly, Figure 19 shows views of the design mapped with isoclines of the density adjoint. The colormap
is identical to that used in Fig. 15 to facilitate direct comparison. Optimization has reduced the magnitude
of the composite cost function (Eq. 2) by a factor of 16 from the baseline design, and comparing the adjoints
before and after reshaping, this improvement is readily apparent. Only the underside of the wing shows
regions that still contribute meaningfully to the cost function.

The aerodynamic performance of the final design was verified using adjoint-based adaptive meshing to
obtain mesh converged values of the primary aerodynamic coefficients. At the design conditions of M∞ = 1.6
and α = 0.612◦, the aircraft has CL = 0.0960 and CD = 0.0119. This is a loss of ∼3.5% in lift with a drag
improvement of 4 counts. The resulting L/D value is 8.1, which is the same as the baseline configuration at
these flight conditions. Additional simulations showed that if warranted, increasing the incidence angle by
0.065◦ restores the lost lift while maintaining a slight (3 count) drag advantage over the baseline vehicle. At
this flight condition, the inviscid L/D of the final design is 8.3.

V. Summary

This work explored the analysis and design of low sonic-boom aircraft through the use of an inviscid,
embedded-boundary Cartesian mesh method. Adjoint error estimation and adaptive meshing were used in
the analysis portion of this study to determine resolution requirements of the computational domain, and the
design examples were conducted using adjoint-based gradients in conjunction with a parallel optimization
framework. The work demonstrates rapid shape optimization of highly parametric, complex models to
simultaneously meet both noise and performance targets.

As a prelude to the optimization work, two analysis experiments were conducted to provide V&V for
specific aspects of the optimization problem. A verification study using an axisymmetric body and an array
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of on- and off-track pressure sensors was conducted to demonstrate the ability of the Cartesian method to
accurately predict pressure signatures at various azimuth angles. This study was conducted at a distance of
1.8 body lengths and provided mesh convergence and error information. The mesh converged result (∼13 M
cells) showed that the signals collapsed to plotting accuracy with no slowdown in the rate of error conver-
gence. This analysis was instructive for providing relative meshing requirements necessary for controlling
discretization error at off-track sensor locations. A validation study showed comparison of on-track and
off-track wind-tunnel data for a low-boom model similar to that used in the optimization example. This
study showed close agreement between computed pressure signals and the wind tunnel experiments.

The design problem performed shape optimization of a 33,000 lb aircraft traveling at Mach 1.6 at an
altitude of 45,000 ft to meet both on-track (Φ = 0◦) and off-track (Φ = 15◦) noise targets while maintaining
lift and drag performance. Low-noise target pressure distributions were prescribed in the computational
domain at a distance of two body-lengths away from the model. A fully parametric low-boom model was
constructed using the RAGE modeler, and a total of approximately 180 parameters were used as design
variables. The design framework used an inverse design formulation to re-shape the model to achieve ground
noise levels of approximately 76.7 PLdB which was a 9.6 dB improvement over the baseline design while
maintaining the lift and drag performance of the original aircraft.

Our discussion focused on the role of the discrete adjoint solution in the design process. We showed that
for common functional definitions, the adjoint solution provides a detailed bookkeeping which highlights
specific regions of the aircraft that contribute to the cost function being minimized through optimization.
For appropriate objective functions, examination of the adjoint solution highlights portions of the geometry
with significant influence on the objective function, and therefore offers insight for model construction,
parameterization and design variable selection.
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